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Asymptotic analysis of radio frequency heated collisional plasma

Nathaniel J. Fisch and Charles F. F. Karney

Princeton Plasma Physics Laboratory, Princeton, New Jersey 08544

(Received 25 February 1985; accepted 20 June 1985)

It is shown that a distribution of electrons in resonance with traveling waves, but colliding with
background distributions of electrons and ions, evolves to a steady state. Previously, the existence
of such solutions had been assumed, but not proved, in numerical and other calculations. Details
of the steady state are given analytically in the asymptotic limit of high electron energy and are
compared with numerical solutions. The asymptotic analytic solution may be useful for quickly
relating emission data to likely excitations and is more reliable than conventional numerical
solutions at high energy. A method of improving numerics at high energy is suggested.

I. INTRODUCTION

Quasilinear theory deals with the collisionless interac-
tion of radio-frequency (rf) waves with a plasma and predicts
the well-known flattening of the electron distribution func-
tion in the region of velocity space resonant with the waves.
Fokker-Planck theory presents the competing effect of in-
terparticle binary Coulomb collisions that tends to relax the
electrons to a Maxwellian distribution. Both theories are
among the most strongly held and widely corroborated mod-
els in theoretical plasma physics. In the presence of both rf
waves and binary collisions, several interesting and useful
phenomena occur, including plasma heating and current
generation.

The theoretical treatment of the velocity space behavior
of electrons undergoing these phenomena begins with the
Fokker-Planck equation (see, e.g., Ref. 1) with an added dif-
fusive term caused by the rf waves, namely,

af J d
” C'(f,f)+C(f,ﬁ)+&v D avf, (1)
where C (£, f) represents electrons with distribution f collid-
ing with themselves, and C ( f, f;) represents the electrons col-
liding with a given ion background. The self-collisions con-
serve energy and momentum, but in the limit of a large mass
ratio, i.e., m;/m, > 1, theion term exchanges momentum but
not energy. For the purposes of investigating rf heating and
current drive, m,/m;—0 is generally assumed in Eq. (1) and
will be assumed here The last term in Eq. {1) contains the
effect of the waves, and we shall immediately specialize to
the case where

DQLiziz s U <V, <Yy,

Dlv) = { (2)

0, otherwise ,

with ?, the unit vector in the direction parallel to a constant
magnetic field, D o a constant, and v,,v, defining the limits
of parallel phase velocities in the wave spectrum. Character-
izing the rf spectrum in this way enables us to reduce the
number of free parameters in the problem to just four: name-
ly, w,=v,/vr, w,=v,/v, Where v is the electron thermal
velocity; D =D o, /v, v}, where v, is the collision frequency;
and Z;, the ion charge state. Equation (2) is suitable for de-
scribing the interaction of lower-hybrid waves with the plas-
ma.
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Although procedures have been developed? to facilitate
solving the fully nonlinear equation (1}, this is not necessary
for our purposes and it remains far easier to solve the linear-
ized equations. Even under strong rf excitation, f is nearly
Maxwellian for most electrons so that we can expand

f=fn+ 1 (3a)
CUALN=C(f f) + Clh ), (3b)

where f represents the deviation of / from a Maxwellian £, .
In our notation, C{ f /) represents the collisions of (test)
distribution f with a Maxwellian background, and C(f,,, f)
represents the collisions of the Maxwellian background of
the test distribution, viz., the self-consistent bulk heating by
the test dlstnbutlon The term C ( f f ) is justifiably neglected
even when f (v}»f,, (v), which can occur on the iaii of the
distribution function. This is because tail electrons still col-
lide far more with bulk electrons then with themselves. Note
that the self-collision term for a Maxwellian distribution,
ie, C(f,,, [ ), is zero.

Equation (1), with D given by Eq. (2}, does not admit a
steady-state solution, since rf waves put energy into elec-
trons, but collisions offer no energy sink. This is true also
when the linearized collision operator is used, since that op-
erator, too, conserves energy. While a time-evolving distri-
bution presents no conceptual difficulty, there are reasons
for preferring to solve a slightly different equation, one that
has a solution evolving to a steady state. Solving such an
equation limits the parameter space of discussion to one less
dimension. We expect, on a physical basis, that in any event
some loss mechanisms will be present that serve to limit the
bulk temperature and to achieve a steady state at some bulk
temperature. It is then convenient to discuss heating rates,
current generation efficiency, etc., as a function of this bulk
temperature, rather than as a function of some initial tem-
perature with time as a parameter.

To arrange a steady state, a dissipative term, i.e., a heat
sink, must be introduced into Eq. (1}, and the exact form of
this sink will necessarily be ad hoc. A rather reasonable heat
sink arises by assuming that some unspecified mechanism
serves to keep the bulk of the electrons at some constant
temperature, thereby negating the bulk heating effect of the
collision term C(f,,, f ) in Eq. (3b). This allows us to ap-
proximate

C(f, f1=C (S, fa) (3c)
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in Eq. (1). The approximation (3c) is particularly good when
the resonant electrons are fast, superthermal electrons, such
as would occur in lower-hybrid heating and current genera-
tion.? For fast electrons, the detailed form of the bulk distri-
bution is relatively unimportant, and, moreover, these elec-
trons have little effect on the form of the bulk distribution
other than to heat it. Approximation (3c) leaves only a Max-
wellian background of scatterers, which serve also as a heat
reservoir to bring the distribution to steady state.

Using Egs. (2) and {3c), Eq. (1) has been solved numeri-
cally in previous work by the authors. Further arguments
are advanced in Ref. 4 that discuss why these approximate
equations describe current generation by lower-hybrid
waves well. However, though tacitly assumed, it has not
been proven that a steady-state solution does, in fact, exist.
The reasoning above does not show that a heat sink is a
sufficient condition for a steady state, only a necessary con-
dition. For example, in the presence of a dc electric field, the
electron distribution function exhibits runaways and no
steady state, even with the heat sink provided by Eq. (3c).
Neither do the numerical solutions of the Fokker-Planck
equation prove the existence of a steady state, even though a
numerical steady state is found. Rather, the numerical stud-
ies assume a priori the existence of such a state in the form of
boundary conditions on the necessarily finite numerical
mesh on which the computations are made.

In this paper we shall prove that Egs. (1), (2), and (3¢)
reach a steady state. The proof consists of setting 8 /¢ = Qin
Eqg. (1) and constructing an asymptotic (i.e., for v— o} solu-
tion, which we show to be normalizable. Apart from aca-
demic interest (the numerical approach is neither general nor
quick at exhibiting asymptotic behavior), such a proof is
viewed as useful in that it justifies the numerical solution,
indicating where the imposition of finite boundary condi-
tions on a numerical grid is valid. Details of this solution
might be checked experimentally by examining the radiation
of very fast electrons.

Having obtained the asymptotic solution, we naturally
wanted to try to use it to describe fanalytically over all veloc-
ity space. Using a rather crude match to the Maxwellian
region u—0, we were able to describe reasonably, if not ri-
gorously, fand several important moments of it.

The paper is organized as follows. In Sec. II we set up
the procedure for solving fanalytically by matching fluxes at
the boundaries of the resonant region. This procedure draws
heavily on material presented in Ref. 5. In Sec. IIT we derive
the asymptotic solution as #—co. In Sec. IV we try to con-
nect this solution to the Maxwellian region, to give a com-
plete analytic description. In Sec. V we compare our analytic
solution to a numerical integration. Section VI summarizes
our findings.

Il. STRONG-RF LIMIT
For fast electrons, Egs. (1), (2), and (3c) can be cast in
normalized form in spherical coordinates as

L?_-f_;_i_‘?_(_l_,ﬂ ) 19 w_ 9
vo Ot u? du u8u+f +u33,u( ”)a,uf

+Zpw-Lr=o0, (4a)
w Jw

d
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D,
0,
where velocities are normalized to the electron thermal
speed, i.e., ¥ = v/Vy,, W ="V,/V4,; We use 4 = w/u and de-
fine £ ==2/(Z; + 1); and we set Eq. (4a) to zero to find the
steady state /. The limit of validity of this equation strictly
includes only u» 1, but note that for ¥ < 1 the solution tends,
as it should, to a Maxwellian. [This large-u limit of the colli-
sion operator of Eq. (3¢c) has been used to predict analytically
and with great accuracy the efficiency of current generation
when w,> 1.5) While this gives us confidence in employing
this limit, here we need the form of £, not merely the more
easily calculated efficiency.

In the event that the rf diffusion is weak, i.e., #°D<],
then Egs. (4) are easily solved analytically by expanding fin
Legendre harmonics of u, exploiting the fact that coupling
between the Legendre harmonics occurs only to higher order
in D.” However, eventually, as u— oo, we obtain D% 1, in-
dicating that asymptotically in u, the rf always flattens the
distribution function in the resonant region. The weak-rf ap-
proach then breaks down and a strong-rf approach must be
taken.

For the strong-rf limit, which is the proper limit for per-
forming asymptotic, we divide velocity space into three re-
gions: I, w <w,; lw, <w <w,; and 111, w> w,. In region I,
where the resonant rf diffusion occurs, we can take D large
and expand fin powers of 1/D, i.e.,

F=F+(U/D)fP + -
and, to lowest order, Eq. (4) becomes

W, <W<W,,

D(w) = [ otherwise ,

(4b)

)

] 2
_gu_)z_f(O] — O, (6)

which has the solution
SO =Fx)+ wG (x), (7)

where x=sv, /v, is the normalized perpendicular velocity.
The functions F and G can be determined, however, only
through matching to solutions in regions I and III. What
must be matched at the boundaries w = w, and w = w, are
the normal (i.e., w = directed) fluxes and /.

We can conclude immediately, however, that G =0,
since G contributes to the w-directed flux in region II to
order D, which is so large that it cannot possibly be matched
in regions I and IlI, where there is no rf, the fluxes can at
most be order D° We shall, in general, be concerned only
with the D— o limit and thus our solution in region II is
simply

f=Fx), (8)
The continuity of fat the region boundaries is then given by
F(x) = f{uypts) = fin(tap2), 9

where f; and f;; are solutions to Egs. (4) in regions I and III,
and where

w]<w<w2.

u=x*+uw’, {10a)
=w,/u, , (10b)
forj=1,2.

As noted above the inability to match fluxes of order D
implied that G = 0. We do expect, however, two boundary
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conditions to arise from the requirement that the normal
flux be continuous, and the condition on G represents only
one condition. The other flux condition assures us that the
perpendicular (x-directed) flux in region II must account for
the difference in the w-directed fluxes at the boundary. To be
specific we define velocity flux S by §f/dt+ V-8 =0, so
that upon integrating this equality from w, to w,, we obtain

JaF 1

A——+—~——

f S, dw + S,y {wgx) — S,y x) =0,
X Ox

(11)
where A=w, — w,, we have made use of Eq. (8), and also
have taken the liberty of writing our fluxes in cylindrical
coordinates (w,x).*

The x-directed flux in region II arise purely from colli-
sions and may be written, using Eq. (8) as
s, = __w_z_ili___gi(xaF/&x +F).

@ ax WP u?

(12)
The second term above, which represents energy scatterings,
is generally much smaller as u—» e than the first term, which
arises from pitch angle scattering.

At this point the problem is well-posed as an initial value
problem. Given F(x,t ) one solves Eq. (4} in regions I and III.
Then, using Eq. (11}, one may compute F(x,f + At )and pro-
ceed to solve for fin regions I and I11 at time ¢ + Az, given the
new boundary condition /= F'(x,t + At ). The fluxes S, are,
of course, determined when f is known. This procedure
would be very efficient for solving Eq. (4} in the limit D— o,
since it eliminates the fast time scale ~1/D. Moreover, by
solving for f only where D (w) = 0, only the collision terms
need be treated. Since the collision terms alone exhibit
spherical symmetry, fully implicit numerical methods can
then be used. This procedure could be used also in solving
Egs. (1) and {2) with D— o0, and the approximation in Eq.
{12) is good as long as w,» 1. To treat the problem exactly in
the limit D—s o0, and be valid also for w, small, a more exact
expression for S, must be written, but that presents no parti-
cular difficulty.

We should specify now the fluxes S, to be used in Eq.
(11); however, since we are interested only in the steady state
of Eq. (11), we can cast it into a slightly different, but more
convenient, form by integrating between 0 and some x,, ob-
taining

Xo aF J‘wz
— xdx —= S . d
J; X ar Xo " x QW

+ [ % axlSulwn) - Sutwpn] =0 (13)
0

where we took d /dr—0 in the steady state. The last term
represents the flux of particles into region II for x < x, from
regions I and III. In the steady state, however, this flux must
equal the radial flux into regions I and III from the boundary
u=(x2 +w?)"?in region I and u = (x3 + w?)"/? in region
I1I (see Fig. 1). Hence we can rewrite this term as

[ 15ut000) = Syt02)1x
0

1

ol
= —f ui Su(un/t)dwrf
—1 M2
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uy S,(upldp,  (14)

I g -
m
s
S, f x
AN
—em !
Sw Sw
w
W W

FIG. 1. Balancing the fluxes between regions I, II, and I1I.

where u; uu; are as defined in Eqs. (10), and
ws,=—¢(Lis). (1)

Thus in the steady state we can write

[t e[ (L)
+¢ “z(gf +f)u=u:dy. (16)

We are now in a position to solve for F, using Egs. (9}, (12),
and (16}, but first we must find f in regions I and III by
solving Eq. (4a). This will be done, for u— e, in the next
section.

1. ASYMPTOTIC STEADY STATE
For the steady state, Eqgs. (4) reduce to regions I and ITI
—

2__6__ Jd (1 af
u )a,uf+§u8u(u +f) - (1)

To perform an asymptotic analysis of Eq. (17), we look for
solutions exhibiting nearly spherical symmetry. Here we are
motivated, in part, by the observation that as u— o the per-
centage of velocity space covered by the resonant region van-
ishes as A/u. Moreover, there is an expectation that if, in
fact, a steady state does exist, the waves should play a smaller
and smaller role as u—» 0. Thus we try

to
d

f= 8 +hlun) (18a)
where

glupph (uy), (18b)
and

dg oh

= 18

du” g (18]

Plugging Eqgs. {18) into Eq. (17), we get

~ & [8un + 8 +(u—1/ulg,]
{1 =y by, +hL)—2ub, , (19)

where the subscript  or ¢ indicates derivatives with respect
to that variable, and where we have made use of Eq. (18c}in
omitting terms proportional to 4 /du. Motivated again by
the solution in the absence of waves, where A =0 and
g = — u?/2, welook for solutions such that g, » 1. From Eq.
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(19) we can then expect to also find 4, » 1. Then balancing
the nonlinear and highest-order-in-u terms in Eq. (19), we
can write

(1—p?)h}: = —E&(ug, +8.), (20)
which we can solve to obtain
h= 4 (0—6,)k, (21a)

k=¢"ug, +8.]"", (21b)

where 0, is a constant of integration (that can depend on u,
but must be smaller than g) and 1/k is treated as an expan-
sion parameter. This expansion is valid so long as

k1,95 (22)
Ju

Note also that g is, at this point, an arbitrary function of u.
We adopt the notation g = g, in region I and g = g, in region
II1. With a view toward matching to region II, we pick the
sign of A in Eq. (21a) such that 4 is largest at the boundary
W = W, OT W = Ww,, and we pick

8p=08,=cos 'y, inregionl, (23a)

8,=0,=cos 'u, inregionIII. (23b)
Thus, at the boundary with region I1, 4 (1,u) = 0. Let

F =G, (24)
so that to satisfy Eq. (9), we must have

G (x) =g\lu,) =g,(us), (25)
which implies that

&ilu) =G [(@* —w?i)''?], (26a)

&lu) =G [(u* —w3)"?] . (26b)

The solution, then, to Eq. (17), with g; as in Eq. (26) and G
still undetermined, is

fee8-kO-0) (27a)
(27b)

We now seek to evaluate the right-hand side of Eq. (16).
Note that

[ Geges).

glu 1 'S #h _k[g_g‘)d
™~ T+ e _‘e {7 ~ . (28)

The integration over ¢ can be evaluated asymptotically as

r e“"w_o"d,u

1
:fe"‘“’”""sin&dﬂ
e

in region I,

f=e®+*6-8  inregion III.

-8,
= J‘W e ¥ (cos y sin 8, + sin y cos 8,)dy
(1]

(29a)

(1 —pi)? (1) x (1)
e 4 O | | =+ O | —7 ],
k + k®/)  ku, k?
where & is understood to be k (1) and where, in writing the
approximate equality, we made use of the fact that k> 1, but
7 — 6, ~0(1). Similarly, we find
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! 1
ooy =X (‘) 290
L, T N \&? (2%l
Define
1 dG (1 dg,)
X = ———= e | ——
) x dx u du/u—u,
= _(_l.iié'l) , {30)
U du/y—u,
so that we an write
k{w)=&"u, [y —p|'?, j=12. (31)

Using Egs. (24)~(31) in Eq. (16}, we can write the right-hand
side of Eq. (16) as

_ 12
rhs(16) = — (ﬂ-—l)) (-—1- + -I——)xF. (32)
y w1
The left-hand side of Eq. (16} may be written, using Eq. (12),
as

Ths(16) = [ — (px + £xqly + Exr]xF, (33)
where

plx)= fw w —:—dx, (34a)

qlx) = wa i‘s" , (34b)

=2 (34c)

Equating Egs. (32) and (33), we obtain
1— 172 g1/2 1 1
—(p+Exqy+Er= —('—‘l) ‘é—‘("-2-+—2'>,
y X u; u
(35)
which allows us to determine y. Note that, by inspection of
Eq. {35), it is apparent that real solutions y exist only in the
interval
I>y>ér/(p+ Ex%g)>0. (36)
The upper limit on y represents a Maxwellian distribution, as
can be seen from Eq. (30), i.e., G = — x2/2. Note that this
obtains when w, = w,, which implies p = ¢ = r = 0, and we
recover the no-rf case. What Eq. (36) states is that Fis a
monotonically decreasing function of x, dropping off no fas-
ter than a Maxwellian with the bulk temperature. Moreover,
note that y is asymptotically bounded below by a nonzero
constant for w,# w,, namely,

ér 54
> — - , 37
P+ Exlg seo (W3 —wi)/3+EA 7

J

where A=w, — w, is the spectrum width. The implication is
that asymptotically ¥ decreases monotonically no slower
than a Maxwellian with some temperature greater than the
bulk temperature. Such a distribution is eminently normali-
zable, which shows that a steady state must exist. Finally,
note that asymptotically bounding y between constants in
Eq. {36), implies by Eq. (31}, that as x— 0, kK ~x, which vali-
dates our solving Eq. (17} via an expansion in 1/%.

We now calculate the asymptotic behavior. For x— 0,
we obtain to leading order

N. J. Fisch and C. F. F. Karney 3110
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This is a cubic equation for y with one real root on the inter-
val (0,1). Thus y always approaches some constant, which
means that F is asymptotically Maxwellian, but at a hotter
temperature than the bulk temperature. In effect, the value
of y~!is the tail temperature. For most heating or current-
drive problems, the case of interest is w} — wi» 1, £A. Set-
ting R ={(w} — w})/3E "% + £V?A> 1, we have

_ (_(i”é_—_ui)_+ gA)y L EA=E? (l—;—y)m . (38)

R + 2 '?ARy* + EA’y =1—p. (39)
Let € = 1/R /% and y = €’z; then Eq. (39) becomes

2+ eV Nz €M 2= 1 — €2, (40)
and expanding z = z, + €z, + -, we find

z=143£"2Ae 4 -, (41)
or

yo= [ —w})/3EV2] 73 + e (42)

For example, if § = 1, w, = 5, w, = 3, the effective tempera-
ture as x— oo is approximately 10 times the bulk tempera-
ture.

At this juncture several caveats ought to be mentioned.
The asymptotic analysis indicates that the leading behavior
of the tail of the electron distribution function is Maxwellian
with a temperature hotter than the bulk temperature. This
result implies that fis normalizable and hence tends to a
steady state. This is useful to know for aesthetic or numerical
purposes. However, the asymptotic result may be valid only
at extremely high values of u. At that point the particle dy-
namics may be affected by phenomena not contained in Eq.
{1), such as relativistic effects and radiation, or the model
used for the waves in Eq. (2) may no longer be useful. More-
over, even if we do accept Egs. {1) and (2) as a valid descrip-
tion, the asymptotic result may be valid only at uninterest-
ingly high values of x. On the other hand, as discussed above,
the procedure outlined here is of more general utility than in
merely calculating the asymptotic temperature.

IV. CONNECTING TO THE BULK DISTRIBUTION

The asymptotic methods of Sec. III are not readily ex-
tendable to describing £, with rigor, over all velocity space.
Nonetheless some progress can be made. Here we shall con-
tent ourselves with writing an analytic expression for f that is
asymptotically correct as u—» 0 and as #—0, and is a reason-
able approximation between these limits.

Our approach is as follows: suppose that the asymptotic
solution holds for x > x5, where x is to be determined later.
Then by Eq. (35) we can determine y(x), which, in turn, by
Eqs. (24) and (30) gives us F (x} in the region x > x . Finally,
we can use Eqgs. (26) and (27) to find fin the disjoint regions I
(w<wy,u>ug,) and 11 (w>w,,u>ug,), where uj=x}

+ w?, j= 1,2 (see Fig. 2). This determines f'up to a multipli-
cative constant in the resonant region x > x and in the dis-
joint nonresonant regions I and III. In principle we can use
this solution to specify fup to a multiplicative constant on
the finite common boundary of these regions, which serves
as proper boundary condition for solving the Fokker-
Planck equation in the complement space (i.e., X <x in the
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Xgr—

Ugy

e
B

W) W, W

FIG. 2. Definitions of xz,uy,, and ugz,. Note that ug,=w,/up, and
Hpy =W,/ lip).

resonant region, etc.). The solution is specified up to a con-
stant which can be found via a normalization condition on f.

It may appear curious that a fully specified problem was

obtained by matching only fat a boundary, rather than both

f and its normal derivative. Here, however, the solution in
one region is valid asymptotically and hence, by construc-
tion, insensitive to the details of the solution in the comple-
ment space. In fact, specifying either for its normal deriva-
tive should give the same solution in the complement space
for x5 sufficiently large.

It remains, however, to solve the Fokker-Planck equa-
tion in the complement space. Although it is easy to write an
analytic solution in the limit #—0, the region u ~w, will be
difficult to treat with rigor. Our approach will be to fit the
u—0 solution to the asymptotic solution notwithstanding,
but subject to constraints on matching the fluxes at
w = w,,w, with x < x5. The boundary x = x5, at which the
matching to the asymptotic solution takes place and which is
so far a free parameter, will be chosen so that the fit is opti-
mized. Although a solution thus obtained is not correct
everywhere in any rigorous asymptotic sense, it should be
adequate for many purposes.

Accordingly, we write the solution to Eq. (17) as u—0 by
exploiting the vanishing of the angular dependence in the
highly collisional subthermal regime. Such a solution may be
constructed formally by solving the equation

9 (14 ) =69 1wy 9

u Ou (u du +f 58,u . 'u)é),uf’ “3)
where fis to be formally expanded as f = f, + 8f, + -+, with
& aformal expansion parameter that is treated as small when
expanding but later equated to unity. Equation (43) treats the
region w < Ww,, ¥ < g, . To zeroth order, we find

fo=4) + B (pexp( — u*/2), (44)

where 4 and B are constants to be determined by boundary
conditions. Assume that F(x) is known not only for x > x,,
but for x<xpz as well. Then, requiring that as u—0,
S—fv €~ /%, wheref is a constant to be found by normaliz-
ing, matching f to the asymptotic solution at u = uy,, and
matching f to the solution in the resonant region at w = w,,
we obtain
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1 —expl —u%,/2)
<o) e =57
— exp| — .

exp 5 p 2 K’ <Hp
and

BT L P L
f_F( U )+ 1 — exp| — w}/2u?)
2

SRR [

where f (1) is the given boundary conditionatu = ug,, F(x)
is the assumed solution in the resonant region x < x5 (which
we have yet to find), and pg;=w;/up;,j = 1,2.

To find F (x) for x < x5, we substitute Eq. (45) into Eq.
{16), and, assuming x5, »1, we obtain

—x[ S, dw £+ )

Do =) e

f=fBW)+(

{45a)

X [F(x) —fy exp( wi —"7)] (46)
where we defined
(tusilTo=] ol @)

and ignored contributions from the boundary at w = w,. Sa-
tisfying Eq. (46) at x = O gives us the condition

o[ " [P e - 5 5

= — & +pp s —fue” ™). (48)
Several notable features of allowed solutions are exhibited by
Eq. (48). Note that, under rf excitation, we expect f to be
flattened for ¥ > w,, such that a superthermal electron tail is
formed with /5 > f» exp{ — #3,/2). This implies, however,
that the right-hand side (48) is negative, which requires that
Fix) <fy expl — w? /2 — x*/2) for at least some x <xg.
Since the opposite inequality is satisfied for x ~x, and F'is
expected to fall off more slowly than a Maxwellian with the
bulk temperature, it follows that F (0)>fy expl — w} /2)==a,
where a can be thought of as the value of f{w = w;, x = 0)in
the absence of rf. This gives us the interesting result, already
seen in numerical calculations, that in the resonant region
near x = 0, the rf excitation actually depletes electrons. Note
that for fy =fy exp{—u%,/2), we see that
F (x) = a exp( — x*/2) solves Eq. (48), thus giving the unper-
turbed Maxwellian solution of the no-rf case.

Plugging Eq. (48) into Eq. (46) and taking the limit x €w,
allows us to write

2
e

ef x[F {x)—a exp(
(]
2
s, dw~xp P v er(1-21), (49
dx 2

Wy
w3

= —X

Wy

3112 Phys. Fluids, Vol. 28, No. 10, October 1985

where € = £ /w? In(w,/w,), and the last approximate equa-
lity evaluated S, from Eq. (12}, taking the limit x—0. Here
p—In(w,/w,). From Eq. (49) it can be seen that in the pres-
ence of rf excitation, i.e, p7#0, xF, ~O(€). Moreover,
F(0)«a implies xF, <0 near x = 0, and by Eq. (48) we see
that the left-hand side of Eq. {49) is negative also at x = x,
giving xF, <0 there, too. Together, the implication is that F
is a monotonically decreasing function of x in the region
O<x<xp.

We can solve Eq. (49) most easily by successive itera-
tions, given € small. An approximate solution is obtained by
setting F = F; expleg(x)], and for €g small, i.e., x not too
large, we obtain

X w2 1 52 _
g=-;—£ [XFO(';;-‘_y)-FG———-—————wexP( );/2) l]dx.
2

(30)

Note that near x = 0, F exhibits Maxwellian behavior with
an effective temperature of e(a/2 + F,/2 — Fw? /w?). Note,
too, that consistent with numerical solutions (to be shown in
the next section) the temperature near x = 0 increases with
x.

We now match Eq. (50) onto the asymptotic solution.
Matching f gives us

Fy=Fye %, (51)
Matching dF /dx gives us

— Xpg € wi 1
% p_fhp (XL
1+ £x3/€ " p{ O(wi 2)

+ % [exp( “zx%’) ~ l”FB . (52)

Finally, satisfying Eq. (48) gives

—u%- J:nx[F —a exp( —2x2)]dx

=§(1+,um)[f3—aexp(—xf;/Z)] . (53)
Equations (51}—{53) represent three equations with which we
find the unknowns Fy, x5, and Fp.

An approximate solution to Egs. (51)-(53) is given by

F(x) = Fyexp[ — (a/F, — 1)ex*/4], x<Xxg, (54)
where x5 solves
exp(x3/2) —1=2py/€, (55)

Y5 = ylx) may be solved for from Eq. (55), and
=[x exp[ — (wi +x5)/2] . (56)
The solution for x > x is given by

Fy=aexp(—x%/2)

F=Fy exp(——f xydx), {57)
with y determined from Eq. (55) and
Fy = Fyexp[ — ela/F, — 1)x}/4] . {58)

Using Eqs. (54)-(56} and Eq. (45), we can now solve for f
when w <w,. {In the small and nonconsequential region
4>pg, and u? <x} + wl, we assume f'is independent of u
for plotting purposes only.) From Eqgs. (57} and (58) we now
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have the multiplicative constant we sought for the asympto-
tic region. This extended solution is admittedly rough and
nonrigorous, but it may be adequate for many purposes. Ex-
actly how well it approximates numerically derived solu-
tions will be discussed in the next section.

V. COMPARISON WITH THE NUMERICAL SOLUTIONS

As a check to the analytical solutions, we numerically
integrated the Fokker—Planck equation until a steady state
was reached. The electron distribution function so obtained
may be compared with the analytical solution.

The numerical code is the same as employed in an earlier
paper, Ref. 4, which solved the Fokker—Planck equation
[written here as Egs. (1), (2), and (3¢)] in spherical coordi-
nates with a boundary condition that S-# =0 at u = t,,,.
Collisions are treated assuming that the ion and electron
backgrounds are stationary Maxwellians. In order to acce-
lerate the approach to steady state, the Fokker—Planck equa-
tion is recast as

i S =
o T Huvs =0, (59)

where A (¢) is some positive function. Obviously that equa-
tion has the same steady state as where 4 (1) = 1, namely
V-S = 0. However, by choosing # {u) to be some increasing
function of u we can accelerate the normally slow relaxation
of the fast electrons. Here we choose A (u) = 1 + u. In addi-
tion, we replace the quasilinear diffusion coefficient D (w) by
D (w)/h (u). This avoids the numerical problems associated
with large diffusion coefficients but does not affect the solu-
tion as long as D, is sufficiently large. In all the examples
shown here, D, = 10.

As a typical case, we consider w;, =5, w, =8, Z, = 1.
Figure 3 shows contour plots of the analytic and numerical
steady-state distributions. The contour levels are chosen in
order to give equally spaced contours for a Maxwellian. The
analytic function correctly predicts the qualitative features
of the numerical solution, namely, the Maxwellian nature of
S for u <w,, the parallel flattening in the plateau, the in-
creased perpendicular temperature in the plateau, and the
increased perpendicular and parallel temperatures in the
nonresonant region for u > w;. There are two aspects of the
solution where there is disagreement: the contours for the
analytic fin the nonresonant regions (I and III) cut in too
quickly. This is because the form of f in the nonresonant
region is only correct asymptotically. In particular, df /du
has a weak (square root) singularity atz = + 1. Note, how-
ever, that better agreement is obtained atu = 4 1 for larger
u, where the asymptotic solution is expected to be better.

One may wonder why the solution elsewhere is so good.
The reason is that the problems nearz = + 1 only affect the
form of f elsewhere through their contribution to the flux.
However, the flux is multiplied by (1 — z?'/?, which is
small.

The other disagreement is the temperature for u = u,,,, -
The numerical solution shows a significantly lower tempera-
ture. However, this is just an artifact of the no-flux boundary
condition at u,,, for the numerical solution, as can be
checked by carrying out the integrations in a larger domain.
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w
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FIG. 3. Contour plots of the analytic {a) and numerical (b) steady-state dis-
tribution functions forw, =5, w, =8,and Z;, = 1.

Turning now to a more quantitative comparison
between the two solutions, we plot in Fig. 4, the perpendicu-
lar distribution function in the resonant region
S Hw, +w,;)/2,x] = F(x). The whole analytic solution for
4> w, hangs on the form of this function, and it is therefore a
sensitive test of the soundness of the analytic method. In this
figure there are two points worthy of note. First, the slope of
F(x) is accurately given by the analytic solution. This is
further checked in Fig. 5, where we plot T, (x), and local
perpendicular  temperature has been defined by
F(x)=exp{ — f[x/T,(x)ldx]. At high x the two tempera-
tures differ by about 20%, which is good agreement consid-
ering that the analytic result should only hold asymptotical-
ly. It is also remarkable how well the analytic form for T, (x)
agrees with the numerical result when x is small. Incidental-
ly, the ripples in the numerical result for T (x) are again an
artifact of the numerics. These arise because the resonant
region is not lined up with the numerical grid. The effect is
magnified because it is necessary to perform a numerical
differentiation to obtain T, (x). The final dip in the numerical

Analyfic

log (F (x)}
@

Numerical

L d 0

-22L4L.___L_J N S ™~
70 80 90

0 10 20 30 40 50 60
172 %

FIG. 4. The perpendicular distribution function F{x) for the case shown in
Fig. 3.
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FIG. 5. The perpendicular temperature T, {x) for the case shown in Fig. 3.

T, (x)is because of the boundary, on which we had imposed a
no-flux condition.

The second point about Fig. 4 is the comparison of the
results for £(0). Let us recall that the one-dimensional the-
ory® has F(0) = exp( — w?/2) for w,» 1. [Here and in Fig. 5
we have divided out the normalizing constant (277) /2] The
two-dimensional result also has this for its leading behavior.
Now we cannot numerically specify w, to closer than Aw, the
grid spacing. That means we expect a numerical error in iog
[F(0)] on the order of w,Au=1 (for w, = 5 and Au = 0.2}.
Given this, the agreement between the numerical and analy-
tical values of log [F {0)] is extremely good since they differ by
only 0.3. Note too that log[F (0)] is less than its one-dimen-
sional value of — w?/2 = 12.5 by about 1.5. This means that
the starting height of the plateau is below the one-dimension-
al value by a factor of 4.5. (This effect, which was observed in
the early numerical solutions, was the motivation behind the
separate analysis in the region w <w,, x~0.)

In order to complement these results, we give F(x) for
three other cases in Fig. 6. These show that the analytical
solution works well for both narrow and broad spectra and
for a range of Z;. We note, however, that the numericai re-
sults consistently give lower results of the perpendicuair
temperature at large x. This, however, is the regime where
we trust the analytical solution (which becomes increasingly
accurate for x— o0 ) more than the numerical solution. There
are two possible problems with the numerical solution. First,
it may take an extremely long time for the steady state to be
reached. The other potential problem with the numerical
solution is that small errors in computing the flux S may
alter the steady state solution appreciably. These errors may
arise either from not taking D, = oo, or from computing S
by numerically differencing /. The numerical code therefore
solves

V-[S(f+8f) + 8S(f+ 8/)1 =0,
instead of

V-S(f)=0.

In cases where the magntitude of S varies over orders of
magnitude, the relative error §f/f may be large in some re-
gions {particularly where f'is small) even when the relative
error in S, § S/, is small everywhere.

The problems with the numerical solutions only affect
the higher energy distribution. The low-order moments such
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FIG. 6. The perpendicular distribution function F (x) for (a)w, = 3, w, = §,
Z,=Lbw,=5w=62Z =1{c)w,=4w,=152, =4.5.

as the current and power dissipated are accurately given by
the numerical solution and furnish another check to the ana-
lytical solution. This comparison is made in Table 1. The
figures for the current differ by at most a factor of 2, which
constitutes good agreement given the difficulty in defining
w, numerically. The efficiency J /P, is easier to measure nu-
merically and, except for the case of a wide spectrum, the
agreement is better {~ 30%). The error here probably arises
from the contribution to P, from the low-x part of the reso-
nant spectrum, which is treated less exactly. This region is
larger when the spectrum is wide, leading to the bigger error.
The method of defining the power dissipated in the analyti-

cal solution deserves comment. Since this solution is only an

approximate steady state, there is no unique definition of P,.

TABLE I. Comparison of Jand J /P,.

w, w, Zi Jnum Janaly (J/Pd )num (J/Pd )nnlly
5 8 1 6.0Xx10™% 7.0x107° 35.7 45.0

3 5 1 6.6x1072 51x10? 14.8 17.6

3 6 1 LIx107% 15x10~° 28.9 36.9

4 15 45 49x107* 50x107? 49.1 142
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FIG. 7. Comparison of the bremsstrahlung emission from the numerical
{solid lines) and analytic (dashed lines) electron distribution functions for
the case shown in Fig. 3. A background temperature of 5 keV is assumed.

For instance, the collisional power transferred to the bulk
need not balance the rf power absorbed. Here we define the
power absorbed in terms of the fluxes in the resonant region,
since it is here that the analytical solution is most reliable.
The rf power absorbed by the plasma is

P, =f lde‘ x dx uS", (60)
Wy (4]

where S is the rf-induced flux. In our case S = S,
where $ = — D, df/dw. This quantity is not directly
known, since in the analysis we took Dy— o0, df /dw—0, so
we relate it to the collisional flux by

SM_g _ g, (61)

where S, is the total w-directed flux. Substituting this into
the expression for P, gives two terms. The first involves the
integral

f xdxS, ,
0

which vanishes in the steady state {the total flux through an
infinite plane is zero). The remaining term gives

P = — ’dwf xdxwS©. (62)
w, 0
In the resonant region, f(x,w) = F(x) and so
d xw dF
_Stc)zfﬂ(_x___. 1)17__._@. 63
YW\ dx + u? dx (©3)
The w integrals can be performed analytically, i.e.,
2
f%—dw=log(w+u)—£, (64)
u x u
and
w? 1w
—dw=— . 65
J. U 3 x%? (63)
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Thus P, is given by a one-dimensional integral involving
Fix).

There is one final check of the analytical solution and
that is the bremsstrahlung emissions. These are compared
for the case w, = 5, w, = 8 in Fig. 7. Here we assumed that
the plasma temperature was 7, = 5 keV and we have only
included the contributions from electrons with speeds up to
u = 15. Given the agreement in f; it is not surprising that we
see a close fit here also. Since the bremsstrahlung is mainly
emitted by the fast electrons, the defects of two analytical
solutions near ¥ = w, do not show up here. When comparing
the other cases we see differences in the intensities of the
high-energy emissions. This is because of the lower tempera-
ture given by the numerical solution. However, as discussed
above, the analytical solution is more trustworthy here.

VI. CONCLUSIONS

We have developed an asymptotic solution for the
Fokker-Planck equation in the presence of strong rf. This
shows that a steady state is achieved; there is no rf runaway
even when Dy— 0. Although the solution is asymptotic, it
gives a good fit to the numerial solutions even for low x; and
by matching the asymptotic solution to an interior solution,
we can derive an approximate solution for f for all u.

This may be used for a number of purposes: the brems-
strahlung may be estimated from the analytical solution and
this may be used to reduce the experimental bremsstrahlung
data to a few important experimental parameters, namely
w,,w,, and Z;. In practice the bremsstrahlung emission may
be affected by relativistic corrections to the collision opera-
tor and other phenomena, such as synchrotron radiation,
which principally affect the high-energy electrons. The ana-
lytic method given in this paper could probably be extended
to include such effects.

The other important area where knowledge of the distri-
bution function is useful is in determining transport coeffi-
cients. The transport of electron energy depends on the per-
pendicular distribution of electrons. Also the success of rf
current ramp-up experiments depends an the resistivity of
the electrons to the induced back current. This resistivity
depends on /.

Finally, knowledge of the asymptotic distribution has
highlighted the difficulty of computing the high-energy dis-
tribution by conventional means and has suggested a way in
which the numerical solution may be improved to deal with
the strong-rf limit, as discussed above [following Eq. (12}].
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